Covering random points in a unit disk

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering Random Points in a Unit Disk

Let D be the punctured unit disk. It is easy to see that no pair x, y in D can cover D in the sense that D cannot be contained in the union of the unit disks centred at x and y. With this fact in mind, let Vn = {X1, X2, . . . , Xn}, where X1, X2, . . . are random points sampled independently from a uniform distribution on D. We prove that, with asymptotic probability one, there are two points i...

متن کامل

Covering Random Points in a Unit Ball

Choose random pointsX1, X2, X3, . . . independently from a uniform distribution in a unit ball in <. Call Xn a dominator iff distance(Xn, Xi) ≤ 1 for all i < n, i.e. the first n points are all contained in the unit ball that is centered at the n’th point Xn. We prove that, with probability one, only finitely many of the points are dominators. For the special casem = 2, we consider the unit disk...

متن کامل

On random points in the unit disk

Let n be a positive integer and λ > 0 a real number. Let Vn be a set of n points in the unit disk selected uniformly and independently at random. Define G(λ, n) to be the graph with vertex set Vn, in which two vertices are adjacent if and only if their Euclidean distance is at most λ. We call this graph a unit disk random graph. Let λ = c √ lnn/n and let X be the number of isolated points in G(...

متن کامل

Covering Points by Isothetic Unit Squares

Given a set P of n points in R, we consider two related problems. Firstly, we study the problem of computing two isothetic unit squares which may be either disjoint or intersecting (having empty common zone) such that they together cover maximum number of points. The time and space complexities of the proposed algorithm for this problem are both O(n). We also study the problem of computing k di...

متن کامل

Covering Points with Disjoint Unit Disks

We consider the following problem. How many points must be placed in the plane so that no collection of disjoint unit disks can cover them? The answer, k, is already known to satisfy 11 ≤ k ≤ 53. Here, we improve the lower bound to 13 and the upper bound to 50. We also provide a set of 45 points that apparently cannot be covered, although this has been determined via computer search.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2008

ISSN: 0001-8678,1475-6064

DOI: 10.1239/aap/1208358884